
1

Electronic Drum Kit
Final Project Report

December 10, 2010

E155

Alex McAuley and Tim Nguyen

Abstract

The goal of the project was to create an electronic drum kit using piezoelectric sensors and actual

sound samples of various percussion instruments. The inputs to the kit are small drum pads,

which house a piezoelelctric transducer. The output voltage from this device is detected and

measured through an analog-to-digital converter located on the PIC. The PIC passes volume and

drum information through a Serial Peripheral Interface (SPI) connection to the FPGA. This

information is processed through an FSM which controls audio playback. In the case that one

sound is still playing when another drum hit is detected, the FPGA has the ability to mix the

samples together. The project produced a kit that would take inputs from two different pads and

produce either a snare drum or a cymbal sound when hit. Future work would involve

implementing an EEPROM for additional sound storage, as well as adding additional drums to

the drum kit.

2

Introduction

The team’s project is an electronic drum kit. The user hits custom-built “drums” that contain a

piezoelectric transducer, and an output waveform will be played on a speaker corresponding to the drum

or drum(s) the user hit. For example, hitting the snare “drum” will play back a snare sound over the

speaker.

High Level Design

The electronic drum kit was designed to be a platform that would allow playback of multiple drums using

inexpensive piezoelectric transducers to detect drum hits. A block diagram of the signal flow is shown

below in Figure 1.

Figure 1. Data flow through the system.

The signal path begins with the piezoelectric transducers and ends with the output speaker. The

piezoelectric transducers are connected to a voltage buffer and voltage-limiting LEDs (shown in the

schematics in Appendix C.1) in order to safely interface with the PIC’s A/D converter. The PIC detects

3

the highest voltage level in the drum hit and relays this information to the FPGA via Serial Peripheral

Interface (SPI). Data about the universal volume level set by the potentiometer is also sent in the same

SPI transmission. Higher voltage from the transducer corresponds to louder output sound. The FPGA will

use this information to adjust the intensity of the output signal sent to the digital-to-analog converter and

ultimately the speaker.

Hardware

To generate signals, piezoelectric transducers are connected to a driver circuit consisting of an op-amp,

several resistors, and LEDs (Appendix C.1). The LEDs are used to protect the ADC pins for voltages

outside their -0.3-5.5V rating. Assuming the LEDs are active for voltages over 2V, the yellow LED will

be active whenever the piezoelectric output voltage is below -2V. When this occurs, the LED acts as a

low impedance path to ground. Physical testing shows that the piezoelectric transducers are not powerful

enough to drive the low impedance of an active LED, and so virtually all of the transducer’s power is

spent across the LED. In other words, the transducer cannot drive both the active LED and the voltage

divider network, so the voltage divider only experiences a brief pulse of energy at voltages below -2V

before the LED activates and shunts the signal power to ground. This means that although the ADC pins

might experience voltage spikes outside of the -.3-5.5V range, these pulses are so short lived that no

damage is done. Likewise, the LEDs may experience voltages of -30V, but for such a brief time that they

are not damaged. The green LEDs are more for decoration; the LM741 is able to drive the ADC pins high

even if these LEDs are active. The 91k and 9.1k voltage divider resistors, however, should limit the input

ADC voltage to 3V based on the measured peak piezoelectric voltage of 30V. The green LEDs, then, only

serve as warning lights should the ADC pin voltage somehow exceed approximately 4V. The colors of

the LEDs are unimportant - they simply made visual identification of different parts of the breadboarded

circuit easier.

An R-2R resistor ladder digital-to-analog converter was created in order to produce eight-bit sound

(Appendix C.2). The output of the resistor ladder is fed into an op amp buffer, and then to an open circuit

audio jack. A guitar amplifier is connected to the board in this way, providing an easy method of

amplifying the outbound signal. The resistor ladder is made solely of one and two megaohm resistors.

These resistors were chosen because they were simple to implement - the larger resistor was twice the

rated resistance of the smaller resistor value.

The team attempted, unsuccessfully, to store additional sound samples in an external EEPROM. The

EEPROM needed to be programmed by a separate Verilog program, and then checked by another

program to make sure that the data was stored correctly. The EEPROM programmer/reader schematic is

located in Appendix C.3.

4

Physical Components

Figure 2. Constructed drum pads

The drum pads were designed to absorb most of the noise and impact energy caused by hitting

the tops of the pads. Each layer that is present in the final construction can be seen in Figure 3.

Figure 3. Diagram of drum pad layers

5

The piezoelectric transducer is epoxied onto a thin layer of sheet metal. This metal layer is then glued

onto several different layers. The mousepad and foam layers exist to negate most of the noise and

transferred force, respectively. The drum pads can easily be adapted to meet different shapes and sizes.

Circular drum pads are one possible variant of the design.

Microcontroller Design

The PIC microcontroller handles configuring the ADC for automatic scanning of the input channels, drum

decoding, and SPI communication with the FPGA. The code for the PIC is divided into three main

functions: main, spi_init, and write_spi.

main (Appendix B.1) is the highest-level function. It first configures the PIC to use PORTB as an ADC.

The ADC checks and scans three different inputs. Two of these inputs come from the drum pads, while

the third monitors a potentiometer that is used to set a universal, maximum volume level. The two inputs

connected to the drum pads monitor changes in voltage. For each drum hit, the maximum voltage reading

is recorded and sent to the FPGA. A hit begins when the voltage level rises above a defined threshold and

it ends when the voltage falls below a lower threshold. Hysteresis is thus applied to prevent “double hits”

from occurring, which are caused by the piezoelectric voltage reverberating after a hit. After each hit the

processor also waits a short amount of time so that reverberations have completely died down. The

waiting time was determined through experimentation and is set by the STALL value. In addition to the

tasks described, the main function also uses the helper functions spi_init and write_spi to configure and

send data over SPI.

spi_init (Appendix B.2) configures the SPI ports on the PIC for usage. SPI1 (in the location of PORTD) is

configured to send data. The PIC is designated as the master, while the FPGA is designated as the slave

device. The SPI is configured to send 16-bit transfers - this allows the team to send out information on

drum number and volume in one package. The baud rate is 32 times slower than the base clock speed of

40 MHz. This slows the transfer down in order to safeguard the system against any timing errors that

might result from using an SPI baud rate that is too large. Other alerts are disabled in order to prevent

interruptions.

write_spi (Appendix B.2) sends data from the PIC to the FPGA by writing the contents of the main

program into the SPI buffer. Since the output transfer size is 16 bits, the PIC can send which drum is

being hit and volume in one data transfer. This makes decoding the PIC signal simple. In the main

function, the drum number and universal volume is represented in the eight most significant bits, and the

volume is transferred in the eight least significant bits.

FPGA Design

The FPGA hardware consists of eight main modules: top, spi_rcv, drum_decode, playbackFSM,

lpm_rom_snare, lpm_rom_cymbal, instr_volume_cntrl, and add_sounds. This section will

describe the operation of each module.

6

top (Appendix A.1) is the top level module of the design. Its inputs are the 40MHz board clock

and SPI clock and data connections. The output is the 8-bit value sent to the DAC. Parameters

{snare,cymbal}_duration_limit and {snare,cymbal}_addr_limit define sample playback speed

and number of samples stored for each drum.

spi_rcv (Appendix A.2) is the SPI receiver. Since the FPGA does not communicate back to the

PIC and because it is the only device being communicated to, there is no need for MISO output

or slave select signals. The module expects 16-bit data from the PIC and outputs any new data on

the 16th cycle of the SPI clock. The data is output as two 8-bit values corresponding to hit

strength and drum ID / universal volume information. The most significant six bits of the

received message correspond to the universal drum volume, or the maximum output volume as

set by the potentiometer. The next 2 bits correspond to the drum ID, which is the information

that tells the FPGA which drum was hit. The last 8 bits correspond to how hard the drum was hit

and are also used in determining output volume. The module is clocked at the faster 40MHz

board clock to ensure it behaves nicely with the other synchronous modules.

drum_decode (Appendix A.3) takes in the the hit strength information (signal SPI_volume) from

the received SPI data and the drum ID (signal drum_num). It uses the drum ID information to

pass the hit strength on to the appropriate playback FSM through signal to_snare or to_cymbal.

The output to each drum is assigned 0 unless that drum is indicated by the drum ID.

Figure 4. Sound-sample playback FSM

7

The sound-sample playback FSM, called playbackFSM (Appendix A.4), is shown in Figure 4. Each drum

has an associated playbackFSM module, which is responsible for selecting the correct sound sample to be

sent to the volume control modules and eventually the speaker. The FSM waits in state 0 until a drum hit

is detected, as indicated by the hit strength signal received over SPI (called volume in the module). The

FSM then enters state 1, which resets duration_counter and addr_counter to 0 before transitioning to

state 2. In state 2, the FSM increments duration_counter until it is greater than input duration_limit,

which determines how long each sample value should be played for and depends on the sampling rate the

sound was recorded at. In state 3, duration_counter is reset and addr_counter is incremented, thus

selecting the next sound sample from memory. If addr_counter exceeds input addr_limit, all samples

have been played, and the FSM transitions back to state 0 where it waits for the next drum hit. The

outputs of the module are the address of the sound sample that should be played, addr, and the

FSM_RUNNING flag which indicates that the FSM is not in waiting state S0. Because the two playback

FSMs run independently of one another, it is possible to play both drums at the same time.

lpm_rom_snare and lpm_rom_cymbal are modules created by the Quartus II MegaWizard. The Verilog

for these modules is not shown because it was generated by Quartus and not written by the team. They are

8-bit synchronous ROMs that hold the sound samples after MATLAB processing. Each one is holds 16k

samples, which was the smallest size that could hold the samples. The drum samples were found online

(see References section) and converted in MATLAB to the desired 8-bit range (0-255). All unused

memory addresses are automatically initialized to zero, although the playback modules should never try

to access these addresses in the first place.

instr_volume_cntrl (Appendex A.4) takes in a sound sample and modifies its value based on the universal

volume universal_volume and hit strength instr_volume to produce output instr_out. This is accomplished

by right-shifting the sample depending on how quiet the volume levels are; the lower the volume, the

more the sample is right-shifted. Right shifting is used because it is a fast method of scaling the signal.

There are too stages of right-shifting. In the first stage, the sample is shifted from 0-3 bits. The thresholds

for each shift amount were determined based on typical hit strength values received over SPI. The next

stage of shifting is dependent on the universal volume. Here the thresholds are determined by evenly

dividing the range of universal_volume values.

playback_active (Appendex A.5) is high when the drum instr_volume_cntrl is connected to is playing

back samples. This is used so that the universal volume or hit strength readings don’t get set to zero in the

middle of playback because the SPI receiver only outputs these signals as non-zero for one cycle of the

the SPI clock. Without registering the values, they would get set to zero in the middle of playing back a

sample.

One of the drawbacks of using 8-bit samples is that the lower volume the samples are shifted to, the less

resolution each sample has. For example, if an 8-bit sample is right-shifted by 5 bits, it effectively only

has 3 bits of resolution. It is hard to hear this loss of resolution on the working device, however, possibly

because the low resolution only occurs at low volumes.

Finally, add_sounds (Appendex A.6) takes in the volume-modified samples from the snare and cymbal

and combines them into a single output by adding them together. This addition holds the possibility for

8

overflowing the 8 output bits, which would heavily distort the sound, but this has not been a problem in

practice. It would be possible to ensure no saturation by right-shifting each input by one bit (dividing it by

two), but this would further limit the resolution of the already low resolution sound.

Results and Conclusions

The final deliverable met all of the goals stated in the project proposal, and was successful overall. The

two pads could be used to play cymbal and snare drum noises at varying volumes, and the built in volume

control could be manipulated to give greater control of audio levels. The different drums could be played

at the same time, and the sounds overlapped without overflowing the 8-bit signal to the DAC.

Our optional goal was not met due to lack of time and board issues. The EEPROM was successfully

programmed and tested, but implementation of the EEPROM with the existing system proved to be

problematic, causing a few board lockups. Code for these processes is located in Appendix A.7 and A.8.

Additional drum sources could also be implemented fairly easily with this system; one would simply need

to modify the code slightly to accommodate additional devices to scan. If more room was needed to store

sound data, data could also be stored on the PIC and transferred over another SPI connection, if

necessary.

References

Snare drum samples found on <http://members.tripod.com/artificial_2/samples/drums.htm>.

Cymbal samples found on <http://www.cymbalsonly.com/index.htm>.

Kick drum samples (for EEPROM) found on <http://bigsamples.free.fr/bdkick.html>.

9

Bill of Materials

Part Supplier Part No. Price/Part Quantity Total Price

256k EEPROM Digi-Key AT28C256-15PU $7.37 1 $7.37

Piezo

Transducer
RadioShack 273-073 $1.99 2 $3.98

Mousepad Amazon F8E089-BLK $4.75 2 $9.50

1/4” Mono Panel-

Mount
Audio Jack

Radioshack 274-252 $2.99 1 $2.99

Sheet Metal

(0.016” STL)
HMC N/A $1.00 1 $1.00

uMudd32 board HMC N/A $75.00 1 $75.00

 Total $99.84

Tax/

Shipping
$3.86

 Total $103.70

10

Appendices

Appendix A. Verilog Code

A.1. Top Level module

/*

This module instantiates the lower-level modules and sets different parameters

for playback. It receives information from the PIC via SPI, and outputs sound

from an eight-bit file to the external DAC.

*/

module top(input clk,

 input SPI_clk,

 input SPI_in,

 output [7:0] sound_out,

);

//44MHz/997 = 441.kHz (audio sample rate)

 parameter snare_duration_limit = 27'd997;

 parameter snare_addr_limit = 14'd11600; //11600 snare samples

 parameter cymbal_duration_limit = 27'd2750; //16kHz audio sample rate

 parameter cymbal_addr_limit = 14'd12986; //# of cymbal samples

 wire [13:0] snare_addr; //current snare sample

 wire [7:0] snare_volume;

 wire [13:0] cymbal_addr;

 wire [7:0] cymbal_volume;

 wire [7:0] SPI_info; // universal volume level and drum ID

 wire [7:0] SPI_volume; //drum hit strength

 wire [7:0] snare_rom_out; //8 bit snare sample value from ROM

 wire [7:0] cymbal_rom_out; //cymbal sample value

 wire [7:0] snare_out; //snare sample adjusted for volume info

 wire [7:0] cymbal_out; //adjusted cymbal sample

 wire snare_running; //flag that goes high when snare is playing back samples

 wire cymbal_running;//flag that goes high when cymbal is playing back samples

 //get info from PIC

 spi_rcv SPIrcv (clk, SPI_clk, SPI_in, SPI_info, SPI_volume);

//decode the SPI info

11

drum_decode drum_decoder (clk, SPI_info [1:0], SPI_volume, snare_volume,

 cymbal_volume);

 //in charge of playing back snare samples

playbackFSM snare_FSM (clk, snare_volume, snare_duration_limit,

 snare_addr_limit, snare_addr, snare_running);

 //in charge of cymbal samples

 playbackFSM cymbal_FSM (clk, cymbal_volume, cymbal_duration_limit,

 cymbal_addr_limit, cymbal_addr, cymbal_running);

 //snare sample memory

 lpm_rom_snare snare (snare_addr, clk, snare_rom_out);

//cymbal sample memory

 lpm_rom_cymbal cymbal (cymbal_addr, clk, cymbal_rom_out);

 //adjust snare volume

instr_volume_cntrl snare_vol (clk, snare_rom_out, snare_volume,

SPI_info[7:2], snare_running, snare_out);

 //adjust cymbal volume

 instr_volume_cntrl cymbal_vol (clk, cymbal_rom_out, cymbal_volume,

 SPI_info[7:2], cymbal_running, cymbal_out);

 //combine samples into single output

 add_sounds sound_adder (snare_out, cymbal_out, sound_out);

 always@(posedge clk)

endmodule

A.2. SPI Reception Module

/*

 This module contains code to receive data over an SPI connection.

 Since we only have one slave SPI device, there is no need to worry about

 configuring several devices for SPI usage, which simplifies things somewhat.

 Data from the PIC comes in 2 bytes:

 MSB [8 bits drum info] [8 bits hit strength] LSB,

 where the drum info contains both the universal volume level and drum ID:

 MSB [6 bits universal volume, 2 bits drum ID] LSB

*/

module spi_rcv(clk, SPI_CLK, SPI_IN, signal_1, signal_2);

input clk;

input SPI_CLK;

input SPI_IN;

output reg [7:0] signal_1;

output reg [7:0] signal_2;

// extra registers for the steps below

reg [15:0] temp;

reg [3:0] count;

12

// We don't really have to worry about SSEL being a wrong value unless

// we have multiple devices to configure for SPI

// I update a temporary value when I see posedge SPI_CLK

always @ (posedge SPI_CLK)

 begin

 count <= count + 1;

 temp <= temp << 1;

 temp[0] <= SPI_IN;

 end

// I count to 16 and update the output when appropriate

always @ (posedge clk)

 if(count == 0)

 begin

 signal_1 <= temp[15:8];

 signal_2 <= temp[7:0];

 end

 else

 begin

 signal_1 <= 0;

 signal_2 <= 0;

 end

endmodule

A.3. Drum Decoder Module

/*

This module determines which drum has been hit from the SPI input. It then

sends volume and signal to the corresponding FSM.

*/

module drum_decode (input clk,

 input [1:0] drum_num,

 input [7:0] SPI_volume,

 output reg [7:0] to_snare,

 output reg [7:0] to_cymbal);

 always@(posedge clk)

 case(drum_num)

 2'b01: begin //cymbal hit

 to_snare = SPI_volume;

 to_cymbal = 8'h0;

 end

 2'b10 : begin //snare hit

13

 to_snare = 8'h0;

 to_cymbal = SPI_volume;

 end

 default: begin

 to_snare = 8'h0;

 to_cymbal = 8'h0;

 end

 endcase

endmodule

A.4. Playback FSM Module

/*

The playbackFSM module uses an FSM to control the playback of the sound samples.

INPUTS:

 volume: how hard was the drum hit? The FSM starts playing back samples when

 a nonzero volume is read for the drum. The actual magnitue of volume

 is not used by this module.

duration_limit: how many clock cycles should each sample be held for? This

value corresponds to the sampling period the drum was recorded at.

 addr_limit: how many samples are in the recorded drum waveform? Stop trying to

 play samples once we've played them all!

OUTPUTS:

 addr: the address of the current sample. This will be used as input to the

 memory in which the samples are stored.

 FSM_RUNNING: the instr_volume_cntrl module needs to know if the drum sample

 is currently being played back.

FSM STATES:

 S0: the waiting state - stay here until the drum is hit (volume != 0). Don't

 advance through the samples.

S1: reset addr_counter and duration_counter - we're just starting to play

back the sample!

 S2: advance the duration_counter. It's time to get the next sample when

 duration_counter > duration_limit.

14

S3: get the next sample by incrementing addr_counter. if we've exceeded

addr_limit, the drum waveform has been played and it's time to return to

the waiting state, else reset duration_counter and return to state 2.

*/

module playbackFSM (input clk,

 input [7:0] volume,

 input [26:0] duration_limit,

 input [13:0] addr_limit,

 output [13:0] addr,

 output FSM_RUNNING);

 reg [1:0] state, nextstate;

 reg [26:0] duration_counter;

 reg [13:0] addr_counter;

 //define states

 parameter S0 = 2'b00;

 parameter S1 = 2'b01;

 parameter S2 = 2'b10;

 parameter S3 = 2'b11;

/*state register - start advancing through samples when we get a volume

signal.

 start playing it again from the beginning even if we're already in the middle

 of playing the waveform - this allows for effects such as a drum-roll! */

 always@(posedge clk)

 begin

 if(volume != 8'b0)

 state <= S1;

 else

 state <= nextstate;

 end

 //duration_counter reg

 always@(posedge clk)

 case(state)

 S0: duration_counter = 0;

 S1: duration_counter = 0;

 S2: duration_counter = duration_counter + 1;

 S3: duration_counter = 0;

 endcase

 //addr_counter reg

 always@(posedge clk)

 case(state)

15

 S0: addr_counter = 0;

 S1: addr_counter = 0;

 S2: addr_counter = addr_counter;

 S3: addr_counter = addr_counter + 1;

 endcase

 //nextstate logic

 always@(*)

 case(state)

 S0: nextstate = S0;

 S1: nextstate = S2;

 S2: nextstate = duration_counter > duration_limit ? S3 : S2;

 S3: nextstate = addr_counter > addr_limit ? S0 : S2;

 endcase

 //output logic

 assign addr = addr_counter;

 assign FSM_RUNNING = state != S0; //not waiting state

endmodule

A.5. Volume Control Module

/*

This module takes in the instrument sample and shifts the output value

according to what the volume values indicate. There are four different volume

levels, which can be influenced by how hard one hits the drum and also by the

potentiometer on the board (universal volume). Bit shifting is used to adjust

volume as it is much faster than multiplication/division.

*/

module instr_volume_cntrl(input clk,

 input [7:0] instr_sample,

 input [7:0] instr_volume,

 input [5:0] universal_volume,

 input playback_active,

 output reg [7:0] instr_out);

 reg [7:0] volume_reg;

 reg [5:0] univ_vol_reg;

 reg [7:0] instr_vol_out;

 always@(posedge clk)

 case(playback_active)

 0: begin

 volume_reg <= instr_volume;

 univ_vol_reg <= universal_volume;

16

//not playing back samples - hold on to last volume

grabbed //over SPI

 end

 1: begin

 if(instr_volume != 0 && instr_volume != volume_reg)

 volume_reg <= instr_volume;

//update volume during playback

 else

 volume_reg <= volume_reg;

if(universal_volume != 0 && universal_volume !=

univ_vol_reg)

 univ_vol_reg <= universal_volume;

//update univeral volume during playback

 else

 univ_vol_reg <= univ_vol_reg;

 end

 endcase

 always@(*)

 begin

 if (volume_reg < 128)

 instr_vol_out = instr_sample >> 3;

 else if(volume_reg >= 128 && volume_reg < 160)

 instr_vol_out = instr_sample >> 2;

 else if(volume_reg >= 160 && volume_reg < 192)

 instr_vol_out = instr_sample >> 1;

 else

 instr_vol_out = instr_sample;

 end

 /*left shift sample (decrease volume) based on universal volume val. */

 always@(*)

 begin

 if (univ_vol_reg < 8)

 instr_out = 8'b0; //mute

 else if(univ_vol_reg >= 8 && univ_vol_reg < 16)

 instr_out = instr_vol_out >> 7;

 else if(univ_vol_reg >= 16 && univ_vol_reg < 24)

 instr_out = instr_vol_out >> 6;

 else if(univ_vol_reg >= 24 && univ_vol_reg < 32)

 instr_out = instr_vol_out >> 5;

 else if(univ_vol_reg >= 32 && univ_vol_reg < 40)

 instr_out = instr_vol_out >> 4;

 else if(univ_vol_reg >= 40 && univ_vol_reg < 48)

 instr_out = instr_vol_out >> 3;

 else if(univ_vol_reg >= 48 && univ_vol_reg < 56)

 instr_out = instr_vol_out >> 2;

 else if(univ_vol_reg >= 56 && univ_vol_reg < 63)

17

 instr_out = instr_vol_out >> 1;

 else

 instr_out = instr_vol_out; //loudest

 end

endmodule

A.6. Sound Adder Module

/*

 This module adds the sounds together from separate FSMs. Initially, the output

data had been right shifted in order to prevent output saturation, but testing proved

that this was unnecessary in a two-drum kit.

*/

module add_sounds(

 input [7:0] snare,

 input [7:0] cymbal,

 output[7:0] combined_out);

 wire [8:0] temp;

 assign temp = snare + cymbal;

 assign combined_out = temp[7:0];//DAC only handles 8 bits

endmodule

A.7. Read EEPROM Module

/*

This module is used to check what has been programmed onto the EEPROM by checking

addresses in numerical order.

*/

module read_eeprom(

 input clk,

 input [7:0] data_in,

 output [14:0] addr,

 output [7:0] data_out,

 output not_CE,

 output not_OE,

 not_WE

);

 reg [40:0] counter;

 always@(posedge clk)

18

 counter = counter + 1;

 assign addr = counter[40:26];

 assign data_out = data_in; //to LEDs

 assign not_CE = 0;

 assign not_OE = 0;

 assign not_WE = 1;

endmodule

A.8. Write EEPROM Module

/*

This module writes the contents of kick_rom, a file generated from the sound of a

kick drum, to the EEPROM module. This code can be modified to add any sort of

information to the EEPROM in question.

*/

module write_eeprom(input clk,

 output not_CE,

 output reg not_WE,

 output not_OE,

 output reg [14:0] addr,

 output [7:0] data,

 output reg WRITE_LED,

 output reg DONE_LED

);

 reg [25:0] count;

 parameter addr_limit = 7754; //number of samples to transfer

 always@(posedge clk)

 if(addr <= addr_limit)

 begin

 count <= count + 1;

 if(count == 1000000) // next byte

 begin

 addr <= addr + 1;

 count <= 0;

 end

 else

 addr <= addr;

 if(count > 800000 && count < 1000000) //write byte

 begin

19

 not_WE <= 0; //latch address

 WRITE_LED <= 1;

 end

 else

 begin

 not_WE <= 1; //latch data

 WRITE_LED <= 0;

 end

 DONE_LED <= 0;

 end

 else

 begin

 not_WE <= 1;

 DONE_LED <= 1;

 end

 assign not_CE = 0;

 assign not_OE = 1;

 kick_rom transfer_rom (addr[12:0], clk, data);

endmodule

20

Appendix B. PIC Code

B.1. ADC Decoder Module/Signal Generator

/*

 This module deciphers the analog input from the piezoelectric capacitors and

 determines which drum has been hit.

/*

Alex McAuley,

amcauley@hmc.edu

November 12, 2010

*/

#include <stdio.h>

#include <p32xxxx.h>

#define THRESH 1 //after crossing to below thresh, send max_val to FPGA

#define HYST 10 //HYSTERESIS factor

#define STALL 5000 //diminish piezo rebound if HYST is not enough - value

found //through testing

int main(){

/*ADC setup modified from Ex.17-4 of PIC32 Family Reference

 Sect.17 - 10-Bit A/D Converter*/

int ADCVal1;

int ADCVal2;

int ADCVal3;

int count;

int max_val1 = 0; //maximum value of ADC channel 1 for current drum hit

int max_val2 = 0; //.............................2..............

int max_update_en1 = 1; //enable flag for updating max_val1

int max_update_en2 = 1; //enable flag for updating max_val2

spi_init();

TRISB = 0xFFFF; //input (analog)

AD1PCFG = 0x0000; //all PORTB = analog

AD1CON1 = 0x00E0; //auto-scan

AD1CSSL = 0x0034; //scan RB2, RB4, RB5

21

AD1CON3 = 0x0F00; //sample time = 15*Tad

AD1CON2 = 0x040C; //interrupt after 3 samples, enable scanning

AD1CON1SET = 0x8000; //turn on ADC

while(1){

 IFS1CLR = 0x0002; //clear ADC flag

 AD1CON1SET = 0x0004; //auto start sampling

 while(!(IFS1 & 0x0002)); //conversion done?

 AD1CON1CLR = 0x0004; //yes, stop adc

 ADCVal1 = ADC1BUF0;

 ADCVal2 = ADC1BUF1;

 ADCVal3 = ADC1BUF2;

 /*now we have ADC samples, let's monitor them to look for the highest

 input voltage, which we'll store in max_val.*/

 /* update enable logic + send output. Send data upon transitioning to

 below threshold level. Use hysteresis for threshold because ADC lower

 bits are quite unstable. Data is sent as 16 bits:

 MSB [6 bits universal volume (from ADC3)],

 [2 bits drum ID number (based on which channel input is from)],

 [8 bits hit strength (value read from ADC channel)] LSB

 10 bit ADC values are bit shifted to fit these fields

*/

 if (ADCVal1 < (max_update_en1 ? THRESH : HYST*THRESH)){

 if(max_update_en1){

 write_spi(1 | (ADCVal3>>4)<<2,max_val1<<2);

 write_spi(0,0); //clear spi buffer so FPGA starts playback

 max_val1 = 0; //reset to prepare for next hit

 for(count=0; count<STALL; count++); //avoid piezo rebounding

 }

max_update_en1 = 0; //don’t allow new hits to be recorded unless signal

 //rises above HYST*THRESH (which will trigger else

// statement (see below)

 }

 else{

 max_update_en1 = 1; //track input from piezo

 }

 /*----Same as above, but now for ADC channel 2----*/

 if (ADCVal2 < (max_update_en2 ? THRESH : HYST*THRESH)){

 if(max_update_en2){

 write_spi(2 | (ADCVal3>>4)<<2,max_val2 <<2);

 write_spi(0,0); //clear spi buffer

 max_val2 = 0;

 for(count=0; count<STALL; count++);

 }

 max_update_en2 = 0;

22

 }

 else{

 max_update_en2 = 1;

 //write_spi(0,0);

 }

 /*update max_vals if they're greater than previous max_vals*/

 if((ADCVal1 > max_val1) && max_update_en1){

 max_val1 = ADCVal1;

 }

 if((ADCVal2 > max_val2) && max_update_en2){

 max_val2 = ADCVal2;

 }

} //repeat

return 0;

}

B.2. SPI Configuration and Transfer Modules

/*

 This code handles SPI operations from the PIC to the FPGA. The PIC is

configured for 16-bit transfers.

*/

#include <p32xxxx.h>

#include <sys/attribs.h>

// set for Pb_clk = Sys_Clk/1

void spi_init(){

 // initialize SPI1

 IEC0CLR=0x03800000; // disable all interrupts

 IFS0CLR=0x03800000; // clear any existing event

 IPC5CLR=0x1f000000; // clear the priority

 IPC5SET=0x0d000000; // Set IPL=3, Subpriority 1

 IEC0SET=0x03800000; // Enable RX, TX and Error interrupts

 SPI1ASTATCLR=0x40; // clear the Overflow

 SPI1ACON = 0; // Stops and resets the SPI1

 SPI1ABRG = 15; //

 SPI1ACON = 0x8720; // 16-bit transfers, ON, Master EN

}

void write_spi(int input_1, int input_2){

 // write values to SPI1ABUF

 SPI1ABUF = (((input_1) << 8)|(input_2));

}

23

Appendix C. Schematics

C.1. Piezoelectric Input Schematic

24

C.2. Output Schematic

25

C.3. EEPROM Board Schematic

